SWOT INSTITUTE APPLICATION OF INTEGRAL
 XII-TEST

Time : 1 hr .

1. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.
2. Find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$.
3. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside the parabola $\mathrm{y}^{2}=4 \mathrm{x}$.
4. Using integration find the area of the region bounded by the triangle whose vertices are $(1,0)$, $(2,2)$ and $(3,1)$.
5. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.
6. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.
7. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$.
8. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.
[Hint : The required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=1$]
9. Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$
10. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$
